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Why EVs?



Battery trends - primer
POPULAR LI-ION BATTERY CHEMISTRIES

What makes a great EV / battery?

cobait aluminum (NCA) manganese cobalt (NMC) e L0y
Specific energy Specific energy Spaciic anegy
Range Energy density
Life span
Speed Power il
Longevity Cycle/calendar life ps:ni‘s:pf:":*e‘n?::'im
Safety SAFETY!

Cost Cell vs. pack

Source: Sharad Bhowmick (2022)



https://circuitdigest.com/article/a-detailed-comparision-of-popular-li-ion-battery-chemistries-used-in-evs

Battery trends - EV industry

N —

The original
chemistry

The budget
chemistry

LMFP / NMCA / etc.

Many solutions
over time...

Prediction:
eventual
“oligopoly” of
chemistries




Battery trends - examples

Traditional Battery Structure

Aluminum foil

Copper foll

Electrode active
material

Addionics 3D Structure
(3D Electrodes)

Addionics

3D Electrodes

Addionics

e A focus on physics,
not chemistry

® Benefits across the
board

Source: Addionics (2023)



Battery trends - examples

Gravimetric Energy Density

[uF Mitra Chem

Sweet Spot

Cost

Ni/Co based
ternary cathodes

Mitra Chem

e A focuson iron-

based cathode
chemistries

e |tis “asolution” but

will not displace high
energy Ni/Co
cathodes

Source: Mitra Chem (2023)



Battery trends - raw material cliff edge is here
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Money needs to be deployed today to avoid the challenges of the coming decade

Source: Benchmark Mineral Intelligence (2023)



Solution: innovate to (a) material
abundance (b) zero emissions,
small-footprint supply chains?






EV supply chain: emission sources

Mining is “the source” of emission
And source of innovation opportunity

« ——— Highest CO,
intensity bill of materials

Lowest CO,
intensity bill of materials

Data From:
Argonne & e Matert Mining &
Pack Assembly Cell Assembly Active Materials . .
N2 Chemical Processing
MINVIRO 2 kgCO,/kWh 20 kgCO,/kWh 21 kgCO,/kWh 95 kgCO,/kWh
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Battery materials: wide-ranging emissions

Clean Product Dirty Product Ratio of CO, Intensity
(low tCO,/t) (high tCO,/t) for Dirty/Clean

LiOH-H,0 9

NaOH 2 Data From:
NiSO,-6H,0 5 ’\f
MnSO,-H,O0 3 N2
CoSO,7H,0 4 MINVIRO
Graphite 6
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Battery supply chains: it starts with the mines

Chemical Components Cell

Mining Processing Production Manufacturing Application

e Define sustainable: low footprint, profitable + human factor
e Measure what matters: energy/carbon, water, reagents, land, transport ++

e Work from first principles: from the ground up and cascade downstream

e Start from the beginning: the mine
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Guiding principle of mining & processing:

Mass is finite Inputs: Ore, reagents, water
Outputs: tailings, emissions
Energy is abundant Past: hydrocarbons

Future: geothermal, hydro, nuclear, wind+solar+storage

Cost is king Innovate to lower footprint, higher efficiency, lowest-cost
source of energy
» Eliminate the cost of hydrocarbons?
» Energy as a source of profit instead of cost?
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Production of materials today: energy is a cost!
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Ore Mining Tailings
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10-30% Processing Recycles

RIS Consumables Product(s)
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Production of materials tomorrow: energy source?
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Profitable decarbonization: eliminating fuel costs

Cost and CO2 4
intensity
Current cost and CO2 * o 08 -
reducti02 T
Posshble' > ===~ %
S Cumulative
material

extracted

Maximum
material
extracted
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Profitable decarbonization: energy as a profit?

87% reduction target (*)

nev L

¢ Invest upfront, stay NPV ~—
positive =
= b
e 5
e Pursue "low-tech” energy 0 ~.| Cumulative
[ ] L \.
harvesting, generation ] — s
= ; »
NPV — — ~x CO2 reduction
e No one-size-fits-all o S |
deep i CO2 reduction
decarbonization i
0 Cumulative

co2
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What are the opportunities?

Commercially viable & ready
solutions today




Target the high-carbon-footprint materials

"Cradle-to-gate" carbon intensity (t CO2/t m)
Ni e Al: Alcoa-Rio Tinto JV in QC

Al e Ni: significant opportunity

Li (rock)

e Li: strong case for brines, CO2-
consuming / sequestering

Cu
Zn
Steel

Li (brine)

Pb

* Co: follows Ni and Cu 19
Source: Marbex (2019).



What are the opportunities?

The Llithium example



Lithium Sources
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Commercial lithium operations: today

Brine ponds - SQM, Chile Spodumene mine - Greenbushes, Australia

Source: Vivas Kumar, Benchmark Minerals Intelligence / Stanford MBA Candidate (2020) 22



Land use (m? per tonne LiOH+H,0)

Life-Cycle Analysis

Water

m? water depletion per tonne LIOH*H,0

Brine Brine Hard Rock Hard Rock

Brine

PROJECT ATLIS
ENERGY SOURCE MINERALS

Brine

iOH-H,0

Tonnes CO, eq. per tonne

Carbon

PROKCTATLS
Brine* Brine Hard Rock Hard Rock ENERGY SOURCE MINERALS

* Technical grade, not battery spec product

Hard Rock

PROJECT ATLIS
Hard Rock  ENERGY SOURCE MINERALS

Source: Minviro Ltd (UK) / ES Minerals LLC (2019)
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Commercial lithium operations: tomorrow

Geothermal brine - California

—— -

Source: ES Minerals LLC, Lithium Americas Corp. (2019)

Ontario
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Lithium production costs fall with carbon footprint

Example innovations to lower cost
and lower carbon footprint:

e Hardrock: Hydropower + high-
< grade ore + CO2-as-a-reagent

Cost of production ($/t LCE)

Hardrock e Brines: geothermal integration

~15t CO2/t LCE

e Clays: on-site acid production
" ~5tCO2/t LCE w/energy co-production

Grade of resource (Li ppm) 25
Source: D.Deak (2016-2018)



Innovating to lowest-cost and footprint

e Ultimate goal: “cradle to cradle” circular economics
o Step 1: Establish a baseline through M&E B, FM + LCAs
o Step 2: Design for harvested energy, zero-fossil fuels
o Step 3: Vertically integrate
o Step 4: Material, reagents, and water are recycled

o Consider: carbon sink incentives



Case study: A zero-emission, low-
footprint mine-to-Gigafactory
ecosystem in Ontario?

Three Ingredient...



